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PMR and electron-impact (EI) mass spectral data of the denudatine alkaloids with saturated C(16)–C(17) bonds
dictysine (1), N-ethyl-de-N-methyldictysine (2), dehydrodictysine (3), corumdizine (4), corumdizinine (5), and cordizine (6)
that were isolated from Delphinium dictyocarpum DC. or D. corymbosum Rgl. have been reported [1-4].  It seemed interesting
to compare these data with those for the alkaloids yesoxine (7) and gomandonine (8) [5, 6], which differ from 1 by the presence
of  additional  oxygen  functional  groups  on  C-1 and C-13 and C(15)-hydroxy-C(16),C(17)-epoxy in ring D instead of an
α,β,γ-triol.  Thus, signals for C(16)–CH2 protons shift sharply to weaker field in the PMR spectrum, as expected on going from
7 and 8 to 4 and 5, in which this group forms a methylenedioxy group.  However, the chemical shifts (CS) approach values
typical of compounds with an open chain.  An analogous picture is observed for the PMR spectra of 7 and 8 compared with those
of the acetonides of dictysine (9) [2] and N-ethyl-de-N-methyldictysine (10) [4].  The difference in the CS values for the signals
of the C(16)–CH2 group decreases sharply in the PMR spectrum of the acetonide of dehydrodictysine (11) [2], which has a
C(15)=O and C(16),C(17)-acetonide.

Examination of models revealed that one of the protons of this group in 11 can be influenced by the strong anisotropic
field of the C(15)=O.  As a result of this, the corresponding signal undergoes a diamagnetic shift.

The EI mass spectra of 4-6 and 10 [3, 4] showed that they undergo fragmentation similar to that of 1, 3, and their
derivatives [1, 2].    Peaks  for ions with m/z 270 and 186 in the spectra of 4, 6, and 10 are due to the presence in them of an
N-ethyl instead of an N-methyl.  One peculiarity of the fragmentation of 4 and 5 is the appearance of [M - 1]+, [M - 47]+, and
[M - 59]+ ions, which is connected with the presence in them of a C(16),C(17)-methylenedioxy group.  A distinguishing feature
of the fragmentation of 3 and 6, which have a C-15 carbonyl, is the generation of [M - 45]+ for the former and [M - 28]+ for
the latter [3].

The mass spectral results for 7 and 8 [5, 6] lead to the conclusion that the principal fragmentation pathway for them
is apparently due to initial rupture of the C(10)–C(20) bond because the base peaks in their spectra are [M - 17]+ or [M - 43]+,
which are formed from the molecular ion by loss of the substituent on C-1 [7].  Fragmentation of macrocentrine (12) [8], which
differs from 2 by additional hydroxyls on C-2 and C-3, is dominated by a process beginning after initial rupture of the
C(7)–C(20) bond because the base peak in the spectrum of this compound is the molecular ion.  The intensities of the peaks for
[M - 17]+ and [M - 35]+ are about the same as those for analogous ions that appear during fragmentation of dictysine (1) [1].

These data lead to the following conclusions.  If the base peak is the molecular ion and peaks for [M - 17]+, [M - 35]+,
and [M - 91]+ appear in the spectra of denudatine alkaloids with a saturated C(16)–C(17) bond, they contain the sequence
CH(OH)–C(OH)–CH2OH  in  ring  D [1, 2].    If [M - 28]+ or [M - 45]+ is the base peak or [M - 47]+ is the base peak and the
[M - 1]+ and [M - 59]+ peaks are strong in the spectra of these compounds, they contain a C(15)-carbonyl or C(16),C(17)-
methylenedioxy, respectively, and lack a substituent on C-1.
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